发布时间:2022-07-06 文章分类:C+ 语言, PhotoShop教程, Python 知识 投稿人:赵颖 字号: 默认 | | 超大 打印

python教程会试着介绍一些其它文章没有提到的小技巧,这些小技巧也是我平时会用到的的。让我们一探究竟吧!

Python大神用9个实用技巧,分享给你

整理字符串输入

整理用户输入的问题在编程过程中极为常见。通常情况下,将字符转换为小写或大写就够了,有时你可以使用正则表达式模块「Regex」完成这项工作。但是如果问题很复杂,可能有更好的方法来解决:

user_input="This
stringhassomewhitespaces...
"
character_map={
ord(
):,
ord():,
ord(
):None
}
user_input.translate(character_map)#Thisstringhassomewhitespaces...

在本例中,你可以看到空格符「 n」和「 t」都被替换成了单个空格,「 r」都被删掉了。这只是个很简单的例子,我们可以更进一步,使用「unicodedata」程序包生成大型重映射表,并使用其中的「combining()」进行生成和映射,我们可以

迭代器切片(Slice)

如果对迭代器进行切片操作,会返回一个「TypeError」,提示生成器对象没有下标,但是我们可以用一个简单的方案来解决这个问题:

importitertools
s=itertools.islice(range(50),10,20)#<itertools.isliceobjectat0x7f70fab88138>
forvalins:
...

我们可以使用「itertools.islice」创建一个「islice」对象,该对象是一个迭代器,可以产生我们想要的项。但需要注意的是,该操作要使用切片之前的所有生成器项,以及「islice」对象中的所有项。

跳过可迭代对象的开头

有时你要处理一些以不需要的行(如注释)开头的文件。「itertools」再次提供了一种简单的解决方案:

string_from_file="""
//Author:...
//License:...
//
//Date:...
Actualcontent...
"""
importitertools
forlineinitertools.dropwhile(lambdaline:line.startswith("//"),string_from_file.split("
")):
print(line)

这段代码只打印初始注释部分之后的内容。如果我们只想舍弃可迭代对象的开头部分(本示例中为开头的注释行),而又不知道要这部分有多长时,这种方法就很有用了。

只包含关键字参数的函数 (kwargs)

当我们使用下面的函数时,创建仅仅需要关键字参数作为输入的函数来提供更清晰的函数定义,会很有帮助:

deftest(*,a,b):
pass
test("valuefora","valueforb")#TypeError:test()takes0positionalarguments...
test(a="value",b="value2")#Works...

如你所见,在关键字参数之前加上一个「」就可以解决这个问题。如果我们将某些参数放在「」参数之前,它们显然是位置参数。

创建支持「with」语句的对象

举例而言,我们都知道如何使用「with」语句打开文件或获取锁,但是我们可以实现自己上下文表达式吗?是的,我们可以使用「enter」和「exit」来实现上下文管理协议:

classConnection:
def__init__(self):
...
def__enter__(self):
#Initializeconnection...
def__exit__(self,type,value,traceback):
#Closeconnection...
withConnection()asc:
#__enter__()executes
...
#conn.__exit__()executes

这是在 Python 中最常见的实现上下文管理的方法,但是还有更简单的方法:

fromcontextlibimportcontextmanager
@contextmanager
deftag(name):
print(f"<{name}>")
yield
print(f"</{name}>")
withtag("h1"):
print("ThisisTitle.")

上面这段代码使用 contextmanager 的 manager 装饰器实现了内容管理协议。在进入 with 块时 tag 函数的第一部分(在 yield 之前的部分)就已经执行了,然后 with 块才被执行,最后执行 tag 函数的其余部分。

用「slots」节省内存

如果你曾经编写过一个创建了某种类的大量实例的程序,那么你可能已经注意到,你的程序突然需要大量的内存。那是因为 Python 使用字典来表示类实例的属性,这使其速度很快,但内存使用效率却不是很高。通常情况下,这并不是一个严重的问题。但是,如果你的程序因此受到严重的影响,不妨试一下「slots」:

classPerson:
__slots__=["first_name","last_name","phone"]
def__init__(self,first_name,last_name,phone):
self.first_name=first_name
self.last_name=last_name
self.phone=phone

当我们定义了「slots」属性时,Python 没有使用字典来表示属性,而是使用小的固定大小的数组,这大大减少了每个实例所需的内存。使用「slots」也有一些缺点:我们不能声明任何新的属性,我们只能使用「slots」上现有的属性。而且,带有「slots」的类不能使用多重继承。

限制「CPU」和内存使用量

如果不是想优化程序对内存或 CPU 的使用率,而是想直接将其限制为某个确定的数字,Python 也有一个对应的库可以做到:

importsignal
importresource
importos
#ToLimitCPUtime
deftime_exceeded(signo,frame):
print("CPUexceeded...")
raiseSystemExit(1)
defset_max_runtime(seconds):
#Installthesignalhandlerandsetaresourcelimit
soft,hard=resource.getrlimit(resource.RLIMIT_CPU)
resource.setrlimit(resource.RLIMIT_CPU,(seconds,hard))
signal.signal(signal.SIGXCPU,time_exceeded)
#Tolimitmemoryusage
defset_max_memory(size):
soft,hard=resource.getrlimit(resource.RLIMIT_AS)
resource.setrlimit(resource.RLIMIT_AS,(size,hard))

我们可以看到,在上面的代码片段中,同时包含设置 CPU 运行时间和内存使用限制的选项。在限制 CPU 的运行时间时,我们首先获得该特定资源(RLIMIT_CPU)的软限制和硬限制,然后使用通过参数指定的秒数和先前检索到的硬限制来进行设置。最后,如果 CPU 的运行时间超过了限制,我们将发出系统退出的信号。在内存使用方面,我们再次检索软限制和硬限制,并使用带「size」参数的「setrlimit」和先前检索到的硬限制来设置它。

控制可以/不可以导入什么

有些语言有非常明显的机制来导出成员(变量、方法、接口),例如在 Golang 中只有以大写字母开头的成员被导出。然而,在 Python 中,所有成员都会被导出(除非我们使用了「all」):

deffoo():
pass
defbar():
pass
__all__=["bar"]

在上面这段代码中,我们知道只有「bar」函数被导出了。同样,我们可以让「all」为空,这样就不会导出任何东西,当从这个模块导入的时候,会造成「AttributeError」。

实现比较运算符的简单方法

为一个类实现所有的比较运算符(如 lt , le , gt , ge)是很繁琐的。有更简单的方法可以做到这一点吗?这种时候,「functools.total_ordering」就是一个很好的帮手:

fromfunctoolsimporttotal_ordering
@total_ordering
classNumber:
def__init__(self,value):
self.value=value
def__lt__(self,other):
returnself.value<other.value
def__eq__(self,other):
returnself.value==other.value
print(Number(20)>Number(3))
print(Number(1)<Number(5))
print(Number(15)>=Number(15))
print(Number(10)<=Number(2))

这里的工作原理究竟是怎样的呢?我们用「total_ordering」装饰器简化实现对类实例排序的过程。我们只需要定义「lt」和「eq」就可以了,它们是实现其余操作所需要的最小的操作集合(这里也体现了装饰器的作用——为我们填补空白)。

结语

并非本文中所有提到的功能在日常的 Python 编程中都是必需或有用的,但是其中某些功能可能会不时派上用场,而且它们也可能简化一些原本就很冗长且令人烦恼的任务。还需指出的是,所有这些功能都是 Python 标准库的一部分。而在我看来,其中一些功能似乎并不像标准库中包含的标准内容,所以当你使用 Python 实现本文提到的某些功能时,请先参阅 Python 的标准库,如果你不能找到想要的功能,可能只是因为你还没有尽力查找(如果真的没有,那它肯定也存在于一些第三方库)。