TransE 及其实现
1. What is TransE?
TransE (Translating Embedding), an energy-based model for learning low-dimensional embeddings of entities.
核心思想:将 relationship 视为一个在 embedding space 的 translation。如果 (h, l, t) 存在,那么
h
+
l
≈
t
h + l \approx t
h+l≈t。
Motivation:一是在 Knowledge Base 中,层次化的关系是非常常见的,translation 是一种很自然的用来表示它们的变换;二是近期一些从 text 中学习 word embedding 的研究发现,一些不同类型的实体之间的 1-to-1 的 relationship 可以被 model 表示为在 embedding space 中的一种 translation。
2. Learning TransE
TransE 的训练算法如下:
2.1 输入参数
- training set
S
S
S:用于训练的三元组的集合,entity 的集合为
E
E
E,rel. 的集合为
L
L
L - margin
γ
\gamma
γ:损失函数中的间隔,这个在原 paper 中描述很模糊 - 每个 entity 或 rel. 的 embedding dim
k
k
k
2.2 训练过程
初始化:对每一个 entity 和 rel. 的 embedding vector 用 xavier_uniform 分布来初始化,然后对它们实施 L1 or L2 正则化。
loop:
- 在 entity embedding 被更新前进行一次归一化,这是通过人为增加 embedding 的 norm 来防止 loss 在训练过程中极小化。
- sample 出一个 mini-batch 的正样本集合
S
b
a
t
c
h
S_{batch}
Sbatch - 将
T
b
a
t
c
h
T_{batch}
Tbatch 初始化为空集,它表示本次 loop 用于训练 model 的数据集 - for
(
h
,
l
,
t
)
∈
S
b
a
t
c
h
(h,l,t) \in S_{batch}
(h,l,t)∈Sbatch do:- 根据 (h, l, t) 构造出一个错误的三元组
(
h
′
,
l
,
t
′
)
(h', l, t')
(h′,l,t′) - 将 positive sample
(
h
,
l
,
t
)
(h,l,t)
(h,l,t) 和 negative sample
(
h
′
,
l
,
t
′
)
(h',l,t')
(h′,l,t′) 加入到
T
b
a
t
c
h
T_{batch}
Tbatch 中
- 根据 (h, l, t) 构造出一个错误的三元组
- 计算
T
b
a
t
c
h
T_{batch}
Tbatch 每一对 positive sample 和 negative sample 的 loss,然后累加起来用于更新 embedding matrix。每一对的 loss 计算方式为:
l
o
s
s
=
[
γ
+
d
(
h
+
l
,
t
)
−
d
(
h
′
+
l
,
t
′
)
]
+
loss = [\gamma + d(h+l,t) - d(h'+l,t')]_+
loss=[γ+d(h+l,t)−d(h′+l,t′)]+
这个过程中,triplet 的 energy 就是指的
d
(
h
+
l
,
t
)
d(h+l,t)
d(h+l,t),它衡量了
h
+
l
h+l
h+l 与
t
t
t 的距离,可以采用 L1 或 L2 norm,即
∣
∣
h
+
r
−
t
∣
∣
||h + r - t||
∣∣h+r−t∣∣ 具体计算方式可见代码实现。
loss 的计算中,
[
x
]
+
=
max
(
,
x
)
[x]_+ = \max(0,x)
[x]+=max(0,x)。
关于 margin
γ
\gamma
γ 的含义, 它相当于是一个正确 triple 与错误 triple 之前的间隔修正,margin 越大,则两个 triple 之前被修正的间隔就越大,则对于 embedding 的修正就越严格。我们看
l
o
s
s
=
[
γ
+
d
(
h
+
l
,
t
)
−
d
(
h
′
+
l
,
t
′
)
]
+
loss = [\gamma + d(h+l,t) - d(h'+l,t')]_+
loss=[γ+d(h+l,t)−d(h′+l,t′)]+,我们希望是
d
(
h
+
l
,
t
)
d(h+l,t)
d(h+l,t) 越小越好,
d
(
h
′
+
l
,
t
′
)
d(h'+l,t')
d(h′+l,t′) 越大越好,假设
d
(
h
+
l
,
t
)
d(h+l,t)
d(h+l,t) 处于理想情况下等于 0,那么由于
γ
\gamma
γ 的存在,
d
(
h
′
+
l
,
t
′
)
d(h'+l,t')
d(h′+l,t′) 如果不是很大的话,仍然会产生 loss,只有当
d
(
h
′
+
l
,
t
′
)
d(h'+l,t')
d(h′+l,t′) 大于
γ
\gamma
γ 时才会让 loss = 0,所以
γ
\gamma
γ 越大,对 embedding 的修正就越严格。
错误三元组的构造方法:将
(
h
,
l
,
t
)
(h,l,t)
(h,l,t) 中的头实体、关系和尾实体其中之一随机替换为其他实体或关系来得到。
2.3 评价指标
链接预测是用来预测三元组 (h,r,t) 中缺失实体 h, t 或 r 的任务,对于每一个缺失的实体,模型将被要求用所有的知识图谱中的实体作为候选项进行计算,并进行排名,而不是单纯给出一个最优的预测结果。
- Mean rank - 正确三元组在测试样本中的得分排名,越小越好
首先对于每个 testing triple,以预测 tail entity 为例,我们将
(
h
,
r
,
t
)
(h,r,t)
(h,r,t) 中的 t 用 KG 中的每个 entity 来代替,然后通过
f
r
(
h
,
t
)
f_r(h,t)
fr(h,t) 来计算分数,这样就可以得到一系列的分数,然后将这些分数排列。我们知道 f 函数值越小越好,那么在前面的排列中,排地越靠前越好。重点来了,我们去看每个 testing triple 中正确答案(也就是真实的 t)在上述序列中排多少位,比如
t
1
t_1
t1 排 100,
t
2
t_2
t2 排 200,
t
3
t_3
t3 排 60 …,之后对这些排名求平均,就得到 mean rank 值了。
- Hits@10 - 得分排名前 n 名的三元组中,正确三元组的占比,越大越好
还是按照上述进行 f 函数值排列,然后看每个 testing triple 正确答案是否排在序列的前十,如果在的话就计数 +1,最终 (排在前十的个数) / (总个数) 就等于 Hits@10。
在原论文中,由于这个 model 比较老了,其 baseline 也没啥参考性,就不做研究了,具体的实验可参考论文。
3. TransE 优缺点
优点:与以往模型相比,TransE 模型参数较少,计算复杂度低,却能直接建立实体和关系之间的复杂语义联系,在 WordNet 和 Freebase 等 dataset 上较以往模型的 performance 有了显著提升,特别是在大规模稀疏 KG 上,TransE 的性能尤其惊人。
缺点:在处理复杂关系(1-N、N-1 和 N-N)时,性能显著降低,这与 TransE 的模型假设有密切关系。假设有 (美国,总统,奥巴马)和(美国,总统,布什),这里的“总统”关系是典型的 1-N 的复杂关系,如果用 TransE 对其进行学习,则会有:
那么这将会使奥巴马和布什的 vector 变得相同。所以由于这些复杂关系的存在,导致 TransE 学习得到的实体表示区分性较低。
4. TransE 实现
这里选择用 pytorch 来实现 TransE 模型。
4.1 __init__
函数
其参数有:
- ent_num:entity 的数量
- rel_num:relationship 的数量
- dim:每个 embedding vector 的维度
- norm:在计算
d
(
h
+
l
,
t
)
d(h+l,t)
d(h+l,t) 时是使用 L1 norm 还是 L2 norm,即
d
(
h
+
l
,
t
)
=
∣
∣
h
+
l
−
t
∣
∣
L
1
o
r
L
2
d(h+l,t)=||h+l-t||_{L1 \ or \ L2}
d(h+l,t)=∣∣h+l−t∣∣L1 or L2 - margin:损失函数中的间隔,是个 hyper-parameter
-
α
\alpha
α:损失函数计算中的正则化项参数
class TransE(nn.Module):
def __init__(self, ent_num, rel_num, device, dim=100, norm=1, margin=2.0, alpha=0.01):
super(TransE, self).__init__()
self.ent_num = ent_num
self.rel_num = rel_num
self.device = device
self.dim = dim
self.norm = norm # 使用L1范数还是L2范数
self.margin = margin
self.alpha = alpha
# 初始化实体和关系表示向量
self.ent_embeddings = nn.Embedding(self.ent_num, self.dim)
torch.nn.init.xavier_uniform_(self.ent_embeddings.weight.data)
self.ent_embeddings.weight.data = F.normalize(self.ent_embeddings.weight.data, 2, 1)
self.rel_embeddings = nn.Embedding(self.rel_num, self.dim)
torch.nn.init.xavier_uniform_(self.rel_embeddings.weight.data)
self.rel_embeddings.weight.data = F.normalize(self.rel_embeddings.weight.data, 2, 1)
# 损失函数
self.criterion = nn.MarginRankingLoss(margin=self.margin)
初始化 embedding matrix 时,直接用 nn.Embedding
来完成,参数分别是 entity 的数量和每个 embedding vector 的维数,这样得到的就是一个 ent_num * dim 大小的 Embedding Matrix。
torch.nn.init.xavier_uniform_
是一个服从均匀分布的 Glorot 初始化器,在这里做的就是对 Embedding Matrix 中每个位置填充一个 xavier_uniform 初始化的值,这些值从均匀分布
U
(
−
a
,
a
)
U(-a,a)
U(−a,a) 中采样得到,这里的
a
a
a 是:
a
=
g
a
i
n
×
6
f
a
n
_
i
n
+
f
a
n
_
o
u
t
a = gain \times \sqrt{\frac{6}{fan\_in + fan\_out}}
a=gain×fan_in+fan_out6
在这里,对于 Embedding 这样的二维矩阵来说,fan_in 和 fan_out 就是矩阵的长和宽,gain 默认为 1。其完整具体行为可参考 pytorch 初始化器文档。
F.normalize(self.ent_embeddings.weight.data, 2, 1)
这一步就是对 ent_embeddings 的每一个值除以 dim = 1 上的 2 范数值,注意 ent_embeddings.weight.data 的 size 是 (ent_num, embs_dim)。具体来说就是这一步把每行都除以该行下所有元素平方和的开方,也就是
l
←
l
/
∣
∣
l
∣
∣
l \leftarrow l / ||l||
l←l/∣∣l∣∣。
损失函数这里先跳过,之后计算损失的步骤一同来看。
4.2 从 ent_idx 到 ent_embs
由于 network 的输入是 ent_idx,因此需要将其根据 embedding matrix 转换成 ent_embs。我们通过 get_ent_resps
函数来完成,其实就是个静态查表的操作:
class TransE(nn.Module):
...
def get_ent_resps(self, ent_idx): #[batch]
return self.ent_embeddings(ent_idx) # [batch, emb]
4.3 计算 energy
d
(
h
+
l
,
t
)
d(h+l, t)
d(h+l,t)
它衡量了
h
+
l
h+l
h+l 与
t
t
t 的距离,可以采用 L1 或 L2 norm 来算,具体采用哪个由 __init__
函数中的 self.norm 来决定:
class TransE(nn.Module):
...
def distance(self, h_idx, r_idx, t_idx):
h_embs = self.ent_embeddings(h_idx) # [batch, emb]
r_embs = self.rel_embeddings(r_idx) # [batch, emb]
t_embs = self.ent_embeddings(t_idx) # [batch, emb]
scores = h_embs + r_embs - t_embs
# norm 是计算 loss 时的正则化项
norms = (torch.mean(h_embs.norm(p=self.norm, dim=1) - 1.0)
+ torch.mean(r_embs ** 2) +
torch.mean(t_embs.norm(p=self.norm, dim=1) - 1.0)) / 3
return scores.norm(p=self.norm, dim=1), norms
4.4 计算 loss
self.criterion 是通过实例化 MarginRankingLoss 得到的,这个类的初始化接收 margin 参数,实例化得到 self.criterion,其计算方式如下:
c
r
i
t
e
r
i
o
n
(
x
1
,
x
2
,
y
)
=
max
(
,
−
y
×
(
x
1
−
x
2
)
+
m
a
r
g
i
n
)
criterion(x_1,x_2,y) = \max(0, -y \times (x_1 - x_2) + margin)
criterion(x1,x2,y)=max(0,−y×(x1−x2)+margin)
借助于此,我们可以实现计算 loss 的代码:
class TransE(nn.Module):
...
def loss(self, positive_distances, negative_distances):
target = torch.tensor([-1], dtype=torch.float, device=self.device)
return self.criterion(positive_distances, negative_distances, target)
positive_distances 就是
d
(
h
+
l
,
t
)
d(h+l,t)
d(h+l,t),negative_distances 就是
d
(
h
′
+
l
,
t
′
)
d(h'+l, t')
d(h′+l,t′),target = [-1],代入 criterion 的计算公式就是我们计算 一对正样本和负样本的 loss 了。
4.5 forward
class TransE(nn.Module):
...
def forward(self, ph_idx, pr_idx, pt_idx, nh_idx, nr_idx, nt_idx):
pos_distances, pos_norms = self.scoring(ph_idx, pr_idx, pt_idx)
neg_distances, neg_norms = self.scoring(nh_idx, nr_idx, nt_idx)
tmp_loss = self.loss(pos_distances, neg_distances)
tmp_loss += self.alpha * pos_norms # 正则化项
tmp_loss += self.alpha * neg_norms # 正则化项
return tmp_loss, pos_distances, neg_distances
以上我们讲完了 TransE 模型的定义,接下来就是讲对 TransE 模型的训练了,只要理解了 TransE 模型的定义,其训练应该不是难事。