发布时间:2023-04-21 文章分类:电脑百科 投稿人:赵颖 字号: 默认 | | 超大 打印

AUC是什么东西?

AUC是一个模型评价指标,只能够用于二分类模型的评价,对于二分类模型来说还有很多其他的评价指标:
比如:logloss,accuracy,precision
在上述的评价指标当中,数据挖掘类比赛中,AUC和logloss是比较常见的模型评价指标
那么问题来了||ヽ( ̄▽ ̄)ノミ|Ю为啥是AUC和logloss?
因为很多机器学习的模型对分类问题的预测结果都是概率,如果要计算accuracy的话,需要先将概率转换成类别,这就需要手动设置一个阈值,如果对一个样本的预测概率高于这个预测,就把这个样本放进一个类别当中,如果低于这个阈值,就放在另一个类别当中,阈值在很大程度上影响了accuracy的计算

使用AUC或者logloss的好处就是可以避免将预测概率转换成类别

AUC: Area under curve

字面理解:某条曲线下面区域的面积
问题来了,到底是哪一条曲线?
曲线的名字叫做:ROC曲线
ROC曲线讲解
(该内容来自于维基百科)

ROC分析的是二元分类模型,也就是输出结果只有两种类别的模型(垃圾邮件/非垃圾邮件)

当观测量的结果是一个连续值的时候,类与类的边界必须用一个阈值threshold来界定

举例来说,用血压值来检测一个人是否有高血压,测出的血压值是连续的实数(从0~200都有可能),以收缩压140/舒张压90为阈值,阈值以上便诊断为有高血压,阈值未满者诊断为无高血压。二元分类模型的个案预测有四种结局:P:positive N:negative

这四种结局可以画成2 × 2的混淆矩阵:

机器学习篇-指标:AUC
ROC空间将伪阳性率FPR定义为X轴,将真阳性率TPR定义为Y轴

TPR:在所有实际为阳性的样本中,被正确地判断为阳性之比率。
机器学习篇-指标:AUC
FPR:在所有实际为阴性的样本中,被错误地判断为阳性之比率。
机器学习篇-指标:AUC
给定一个二元分类模型和它的阈值,就能从所有样本的(阳性/阴性)真实值和预测值计算出一个 (X=FPR, Y=TPR) 座标点。

从 (0, 0) 到 (1,1) 的对角线将ROC空间划分为左上/右下两个区域,在这条线的以上的点代表了一个好的分类结果(胜过随机分类),而在这条线以下的点代表了差的分类结果(劣于随机分类)。

完美的预测是一个在左上角的点,在ROC空间座标 (0,1)点,X=0 代表着没有伪阳性,Y=1 代表着没有伪阴性(所有的阳性都是真阳性);也就是说,不管分类器输出结果是阳性或阴性,都是100%正确。一个随机的预测会得到位于从 (0, 0) 到 (1, 1) 对角线(也叫无识别率线)上的一个点;最直观的随机预测的例子就是抛硬币。

让我们来看在实际有100个阳性和100个阴性的案例时,四种预测方法(可能是四种分类器,或是同一分类器的四种阈值设定)的结果差异:

机器学习篇-指标:AUC
将这4种结果画在ROC空间里:

机器学习篇-指标:AUC
**离左上角越近的点预测(诊断)准确率越高。**离右下角越近的点,预测越不准。

A、B、C三者当中,最好的结果是A方法。

B方法的结果位于随机猜测线(对角线)上,在例子中我们可以看到B的准确度是50%。

C虽然预测准确度最差,甚至劣于随机分类,也就是低于0.5(低于对角线)。然而,当将C以 (0.5, 0.5) 为中点作一个镜像后,C’的结果甚至要比A还要好。这个作镜像的方法,简单说,不管C(或任何ROC点低于对角线的情况)预测了什么,就做相反的结论。

上述ROC空间里的单点,是给定分类模型且给定阈值后得出的。但同一个二元分类模型的阈值可能设定为高或低,每种阈值的设定会得出不同的FPR和TPR。

同一模型每个阈值 的 (FPR, TPR) 座标都画在ROC空间里,就成为特定模型的ROC曲线。

在同一个分类器之内,阈值的不同设定对ROC曲线的影响,仍有一些规律可循:

曲线下面积(AUC)

在比较不同的分类模型时,可以将每个模型的ROC曲线都画出来,比较曲线下面积做为模型优劣的指标。

意义

ROC曲线下方的面积(英语:Area under the Curve of ROC (AUC ROC)),其意义是:

因为是在1x1的方格里求面积,AUC必在0~1之间。

假设阈值以上是阳性,以下是阴性;

若随机抽取一个阳性样本和一个阴性样本,分类器正确判断阳性样本的值高于阴性样本之机率=AUC

简单说:AUC值越大的分类器,正确率越高。
机器学习篇-指标:AUC

从AUC判断分类器(预测模型)优劣的标准:

AUC = 1,是完美分类器,采用这个预测模型时,存在至少一个阈值能得出完美预测。绝大多数预测的场合,不存在完美分类器。

0.5 < AUC < 1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。

AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。

AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。

计算

AUC的计算有两种方式,都是以逼近法求近似值。

AUC为什么可以衡量分类的效果?

根据上面的推断,那么随机抽取一个样本,对应每一潜在可能值X都有对应一个判定正样本的概率P。

对一批已知正负的样本集合进行分类,按照预测概率从高到低进行排序,

对于正样本中概率最高的,排序为rank_1,

比它概率小的有M-1个正样本(M为正样本个数),(ranl_1-M)个负样本。

正样本中概率第二高的,排序为rank_2,

比它概率小的有M-2个正样本,(rank_2-(M-1))个负样本,

以此类推,正样本中概率最小的,排序为rank_M,

比它概率小的有0个正样本,(rank_M-1)个负样本。

总共有M*N个正负样本对,把所有比较中正样本概率大于负样本概率的例子都算上,

得到公式:机器学习篇-指标:AUC
就是正样本概率大于负样本概率的可能性,将上述结果化简之后:

机器学习篇-指标:AUC
上述结果就是,AUC公式

AUC是现在分类模型中,特别是二分类模型使用的主要离线评测指标之一,相比于准确率,召回率,AUC有一个独特的优势,就是不管具体的得分,只关注于排序结果,这使得它特别适用于排序问题的效果评估

根据上面的公式求解AUC

首先对score从大到小排序,然后令最大score对应的sample的rank值为n,第二大score对应sample的rank值为n-1,以此类推从n到1。然后把所有的正类样本的rank相加,再减去正类样本的score为最小的那M个值的情况。得到的结果就是有多少对正类样本的score值大于负类样本的score值,最后再除以M×N即可。**值得注意的是,当存在score相等的时候,对于score相等的样本,需要赋予相同的rank值(无论这个相等的score是出现在同类样本还是不同类的样本之间,都需要这样处理)。**具体操作就是再把所有这些score相等的样本 的rank取平均。然后再使用上述公式。此公式描述如下:

机器学习篇-指标:AUC

def naive_auc(labels,preds):
    """
    最简单粗暴的方法
   先排序,然后统计有多少正负样本对满足:正样本预测值>负样本预测值, 
      再除以总的正负样本对个数。复杂度 O(NlogN), N为样本数
    """
    n_pos = sum(labels)
    n_neg = len(labels) - n_pos
    total_pair = n_pos * n_neg
    labels_preds = zip(labels,preds)
    labels_preds = sorted(labels_preds,key=lambda x:x[1])//从小到大,倒序计算
    accumulated_neg = 0
    satisfied_pair = 0
    for i in range(len(labels_preds)):
        if labels_preds[i][0] == 1:
            satisfied_pair += accumulated_neg
        else:
            accumulated_neg += 1
    return satisfied_pair / float(total_pair)

接下来还可以采用进一步加速的方法:

使用近似方式,将预测值分桶,对正负样本分别构建直方图,再统计满足条件的正负样本对

关于AUC还有一个很有趣的性质,它和Wilcoxon-Mann-Witney Test类似(可以去google搜一下),而Wilcoxon-Mann-Witney Test就是**测试任意给一个正类样本和一个负类样本,正类样本的score有多大的概率大于负类样本的score。**有了这个定义,就可以得到了另外一中计算AUC的方法:计算出这个概率值。我们知道,在有限样本中我们常用的得到概率的办法就是通过频率来估计之。这种估计随着样本规模的扩大而逐渐逼近真实值。样本数越多,计算的AUC越准确类似,也和计算积分的时候,小区间划分的越细,计算的越准确是同样的道理。具体来说就是: 统计一下所有的 M×N(M为正类样本的数目,N为负类样本的数目)个正负样本对中,有多少个组中的正样本的score大于负样本的score。当二元组中正负样本的 score相等的时候,按照0.5计算。然后除以MN。实现这个方法的复杂度为O(n^2 )。n为样本数(即n=M+N),公式表示如下:
机器学习篇-指标:AUC

def approximate_auc(labels,preds,n_bins=100):
    """
    近似方法,将预测值分桶(n_bins),对正负样本分别构建直方图,再统计满足条件的正负样本对
    复杂度 O(N)
    这种方法有什么缺点?怎么分桶?
    """
    n_pos = sum(labels)
    n_neg = len(labels) - n_pos
    total_pair = n_pos * n_neg
    pos_histogram = [0 for _ in range(n_bins)]
    neg_histogram = [0 for _ in range(n_bins)]
    bin_width = 1.0 / n_bins
    for i in range(len(labels)):
        nth_bin = int(preds[i]/bin_width)
        if labels[i]==1:
            pos_histogram[nth_bin] += 1
        else:
            neg_histogram[nth_bin] += 1
    accumulated_neg = 0
    satisfied_pair = 0
    for i in range(n_bins):
        satisfied_pair += (pos_histogram[i]*accumulated_neg + pos_histogram[i]*neg_histogram[i]*0.5)
        '''
        accumulated_neg统计当前bins之前有多少负样本桶,将其*pos_histogram[i] 等价于当前正样本桶有大于负样本桶
        pos_histogram[i]*neg_histogram[i]*0.5,有可能正样本桶和负样本桶落在同一个区间,当前区间无法计算,近似
        '''
        accumulated_neg += neg_histogram[i]
    return satisfied_pair / float(total_pair)

但是上述方法的问题在于:

预测值大多不是均匀分布在0-1之间的,分布特别不平衡的话,均匀分出来的桶就不太好,

采用频率进行划分桶,(均匀划分,等频划分)

进一步的尝试MapReduce如何计算AUC

MAP阶段:统计直方图

Reduce阶段:计算AUC的结果

上述完整代码:

# coding=utf-8
# auc值的大小可以理解为: 随机抽一个正样本和一个负样本,正样本预测值比负样本大的概率
# 根据这个定义,我们可以自己实现计算auc
import random
import time
def timeit(func):
    """
    装饰器,计算函数执行时间
    """
    def wrapper(*args, **kwargs):
        time_start = time.time()
        result = func(*args, **kwargs)
        time_end = time.time()
        exec_time = time_end - time_start
        print "{function} exec time: {time}s".format(function=func.__name__,time=exec_time)
        return result
    return wrapper
def gen_label_pred(n_sample):
    """
    随机生成n个样本的标签和预测值
    """
    labels = [random.randint(0,1) for _ in range(n_sample)]
    preds = [random.random() for _ in range(n_sample)]
    return labels,preds
@timeit
def naive_auc(labels,preds):
    """
    最简单粗暴的方法
   先排序,然后统计有多少正负样本对满足:正样本预测值>负样本预测值, 再除以总的正负样本对个数
     复杂度 O(NlogN), N为样本数
    """
    n_pos = sum(labels)
    n_neg = len(labels) - n_pos
    total_pair = n_pos * n_neg
    labels_preds = zip(labels,preds)
    labels_preds = sorted(labels_preds,key=lambda x:x[1])
    accumulated_neg = 0
    satisfied_pair = 0
    for i in range(len(labels_preds)):
        if labels_preds[i][0] == 1:
            satisfied_pair += accumulated_neg
        else:
            accumulated_neg += 1
    return satisfied_pair / float(total_pair)
@timeit
def approximate_auc(labels,preds,n_bins=100):
    """
    近似方法,将预测值分桶(n_bins),对正负样本分别构建直方图,再统计满足条件的正负样本对
    复杂度 O(N)
    这种方法有什么缺点?怎么分桶?
    """
    n_pos = sum(labels)
    n_neg = len(labels) - n_pos
    total_pair = n_pos * n_neg
    pos_histogram = [0 for _ in range(n_bins)]
    neg_histogram = [0 for _ in range(n_bins)]
    bin_width = 1.0 / n_bins
    for i in range(len(labels)):
        nth_bin = int(preds[i]/bin_width)
        if labels[i]==1:
            pos_histogram[nth_bin] += 1
        else:
            neg_histogram[nth_bin] += 1
    accumulated_neg = 0
    satisfied_pair = 0
    for i in range(n_bins):
        satisfied_pair += (pos_histogram[i]*accumulated_neg + pos_histogram[i]*neg_histogram[i]*0.5)
        accumulated_neg += neg_histogram[i]
    return satisfied_pair / float(total_pair)
# 思考:mapreduce版本的auc该怎么写
if __name__ == "__main__":
    labels,preds = gen_label_pred(10000000)
    naive_auc_rst = naive_auc(labels,preds)
    approximate_auc_rst = approximate_auc(labels,preds)
    print "naive auc result:{},approximate auc result:{}".format(naive_auc_rst,approximate_auc_rst)
    """
    naive_auc exec time: 31.7306630611s
    approximate_auc exec time: 2.32403683662s
    naive auc result:0.500267265728,approximate auc result:0.50026516844
    """