发布时间:2023-04-21 文章分类:电脑百科 投稿人:王小丽 字号: 默认 | | 超大 打印

入门小菜鸟,希望像做笔记记录自己学的东西,也希望能帮助到同样入门的人,更希望大佬们帮忙纠错啦~侵权立删。

目录

一、LDA简介

二、数学原理(以二分类为例子)

1、设定

2、每一类的均值和方差

3、目标函数

4、目标函数的求解

5、最终的实践所求

三、多分类LDA

四、LDA用途与优缺点

1、用途

2、优点

3、缺点

五、LDA的python应用

1、调用函数LinearDiscriminantAnalysis

2、常用参数意义

3、常用返回值

4、利用LDA进行二分类实例

一、LDA简介

LDA(线性判别分析)是一个经典的二分类算法。

主要思想:以一种基于降维的方式将所有的样本映射到一维坐标轴上,然后设定一个阈值,将样本进行区分

如下图所示,把红蓝两类的点投影在了一条直线(向量a)上,即二维变一维(本来一个点要用(x,y)来表示,投影到直线后就用一个维度来描述)。

线性判别分析(LDA)详解

二、数学原理(以二分类为例子)

1、设定

首先我们假设整个样本空间分为两个类别,分别是1、-1;N1、N2分别代表1,-1类别样本的个数;样本为X。

那么有:线性判别分析(LDA)详解线性判别分析(LDA)详解

设定z为映射后的坐标(即投影后的坐标)

2、每一类的均值和方差

将样本数据X向w向量(设定w的模长为1)做投影,则有:线性判别分析(LDA)详解

接下来求出映射后的均值和方差(用来衡量样本的类间距离和类内距离)

均值:线性判别分析(LDA)详解线性判别分析(LDA)详解

方差:线性判别分析(LDA)详解线性判别分析(LDA)详解

3、目标函数

想要得到好的分类模型,即要求类内间距小,类间间距大。即:

类内间距小:线性判别分析(LDA)详解;两个类的方差越小,说明样本越密集
类间间距大:线性判别分析(LDA)详解;用两个类的均值的距离说明两个类之间的距离

根据这样的思路构建目标函数:

线性判别分析(LDA)详解

J(w)越大越好,即我们要求的是:线性判别分析(LDA)详解

4、目标函数的求解

化简目标函数:(将w向量与原数据的运算分隔开)

线性判别分析(LDA)详解

令类间散度矩阵:线性判别分析(LDA)详解;类内散度矩阵:线性判别分析(LDA)详解,则有:

线性判别分析(LDA)详解

方法一:

为了解决线性判别分析(LDA)详解,则对J(w)求导:

线性判别分析(LDA)详解

化简得到:

线性判别分析(LDA)详解

又因为线性判别分析(LDA)详解线性判别分析(LDA)详解线性判别分析(LDA)详解都是标量,w前面我们已经约定它的模长为1,所以我们不关心它的长度,只关心他的方向,所以把标量都摘掉,得:

线性判别分析(LDA)详解

方法二:

J(w)的分子分母都是关于w的二次项,因此J(w)的解与w的长度无关,只与它的方向有关。所以这里为例简单处理也可以令线性判别分析(LDA)详解,故求线性判别分析(LDA)详解,利用拉格朗日乘子法可得:

线性判别分析(LDA)详解

又因为线性判别分析(LDA)详解方向恒为线性判别分析(LDA)详解,所以令线性判别分析(LDA)详解,因此有线性判别分析(LDA)详解

5、最终的实践所求

为得到数值解的稳定性,通常对线性判别分析(LDA)详解进行奇异值分解(线性判别分析(LDA)详解),再由线性判别分析(LDA)详解得到线性判别分析(LDA)详解

三、多分类LDA

假定存在N个类,且第i类示例数为线性判别分析(LDA)详解

全局散度矩阵:线性判别分析(LDA)详解,其中线性判别分析(LDA)详解是所有样本的均值向量。

类内散度矩阵:线性判别分析(LDA)详解

类间散度矩阵:线性判别分析(LDA)详解

然后与上面的二分类类似:目标函数为:

线性判别分析(LDA)详解

类似可得:线性判别分析(LDA)详解

所以W的解为线性判别分析(LDA)详解的特征向量组成的矩阵。

四、LDA用途与优缺点

1、用途

LDA既可以用来降维(将W视为投影矩阵),又可以用来分类,但主要还是用于降维。

2、优点

与另一个降维算法PCA对比

(1)在降维过程中可以使用类别的先验知识经验,而PCA(无监督学习)无法使用类别先验知识

(2)LDA样本分类依赖的是均值而不是方差,比PCA算法更优

3、缺点

(1)LDA不适合对非高斯分布的样本降维

(2)LDA降维最多降到类别数N-1的维数,如果我们降维的维度大于N-1,则不能使用LDA

(3)LDA可能会过度拟合数据

五、LDA的python应用

1、调用函数LinearDiscriminantAnalysis

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

2、常用参数意义

(1)solver:字符串类型,指定求解最优化问题的算法

🌳'svd':奇异值分解。对于有大规模特征的数据,推荐用这种算法

🌳'lsqr':最小平方差,可以结合skrinkage参数

🌳'eigen' :特征分解算法,可以结合shrinkage参数

(2)skrinkage:取值:字符串‘auto’或者浮点数或者None。

该参数通常在训练样本数量小于特征数量的场合下使用。

🌳‘auto’:自动决定shrinkage参数的大小

🌳None:不使用shrinkage参数

🌳浮点数(位于0~1之间):自己指定的shrinkage参数

(3)n_components:(整数类型)指定了数组降维后的维度(该值必须小于n_classes-1)

(4)priors:一个数组,数组中的元素依次指定了每个类别的先验概率。如果为None,则认为每个类的先验概率都是等可能的

3、常用返回值

coef_:权重向量

intercept:b值

covariance_:一个数组,依次给出了每个类别的协方差矩阵

means_:一个数组,依次给出了每个类别的均值向量

xbar_:给出了整体样本的均值向量

4、利用LDA进行二分类实例

来个简单的小栗子

我们使用sklearn里的乳腺癌数据集

from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()

然后对数据进行一个处理,让我们看起来舒服点,计算机处理也舒服点

data=cancer["data"]
col = cancer['feature_names']
x = pd.DataFrame(data,columns=col)#就是那些个特征
target = cancer.target.astype(int)
y = pd.DataFrame(target,columns=['target'])#对应特征组合下的类别标签

训练集测试集分分类

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=1)

直接进入训练

clf = LinearDiscriminantAnalysis(n_components=1)
model=clf.fit(x_train,y_train)

训练出来的模型对test集进行一个预测

y_pred = model.predict(x_test)
print(classification_report(y_test, y_pred))

完整代码

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn import metrics
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
cancer = load_breast_cancer()
data=cancer["data"]
col = cancer['feature_names']
x = pd.DataFrame(data,columns=col)
target = cancer.target.astype(int)
y = pd.DataFrame(target,columns=['target'])
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=1)
clf = LinearDiscriminantAnalysis(n_components=1)
model=clf.fit(x_train,y_train)
y_pred = model.predict(x_test)
print(classification_report(y_test, y_pred))

结果

线性判别分析(LDA)详解

欢迎大家在评论区批评指正,谢谢~