发布时间:2023-04-20 文章分类:电脑百科 投稿人:赵颖 字号: 默认 | | 超大 打印

活动地址:CSDN21天学习挑战赛

学完手写识别和服装分类,想稍微停下来消化一下新学的东西,也总结一下,今天就从keras的model.summary()输出开始吧!

1、model.summary()是什么

构建深度学习模型,我们会通过model.summary()输出模型各层的参数状况,已我们刚刚学过的模型为例:
【深度学习21天学习挑战赛】备忘篇:我们的神经网模型到底长啥样?——model.summary()详解
【深度学习21天学习挑战赛】备忘篇:我们的神经网模型到底长啥样?——model.summary()详解
这里可以看出,model.summary()打印出的内容,是和我们构建模型的层级关系是一样,服装分类模型为例:

#构建模型代码
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), #卷积层1,卷积核3*3
    layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3
    layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层3,卷积核3*3
    layers.Flatten(),                      #Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation='relu'),   #全连接层,特征进一步提取
    layers.Dense(10)                       #输出层,输出预期结果
])

【深度学习21天学习挑战赛】备忘篇:我们的神经网模型到底长啥样?——model.summary()详解

2、model.summary()输出含义

仍以服装分类模型为例:

Model: "sequential_2"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_6 (Conv2D)            (None, 26, 26, 32)        320   
#创建: layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), #卷积层1,卷积核3*3
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 13, 13, 32)        0       
#创建:layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样  
_________________________________________________________________
conv2d_7 (Conv2D)            (None, 11, 11, 64)        18496    
#创建:layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3 
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 5, 5, 64)          0     
#创建:layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样    
_________________________________________________________________
conv2d_8 (Conv2D)            (None, 3, 3, 64)          36928     
#创建:layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层3,卷积核3*3
_________________________________________________________________
flatten_2 (Flatten)          (None, 576)               0   
#创建:layers.Flatten(),       #Flatten层,连接卷积层与全连接层      
_________________________________________________________________
dense_4 (Dense)              (None, 64)                36928  
#创建:layers.Dense(64, activation='relu'),   #全连接层,特征进一步提取  
_________________________________________________________________
dense_5 (Dense)              (None, 10)                650       
#创建:layers.Dense(10)                       #输出层,输出预期结果
=================================================================
Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0
_________________________________________________________________

3、理解模型流程形状

通过model.summary(),我们再看这个图,就清楚多了
【深度学习21天学习挑战赛】备忘篇:我们的神经网模型到底长啥样?——model.summary()详解

【深度学习21天学习挑战赛】备忘篇:我们的神经网模型到底长啥样?——model.summary()详解