说在最前面
这篇文章主要介绍用于非侵入式负荷识别领域目前的公开数据集、工具和其它等,如果需要看论文及具体代码实现,看我上一篇的文章。
其外,不是所有数据集我都用过,我只用过UK-DALE,所以其它数据集你问我怎么处理我也不知道!!!!!!!!!!!!!!!!
但是如果你动手能力不足的话,可以考虑:
1.直接使用nilmtk工具包
2.参考我的另外一篇文章NILM非侵入式负荷识别(papers with code、data)带代码的论文整理——(论文及实现代码篇) 全网最全https://blog.csdn.net/aa2962985/article/details/128635658?spm=1001.2014.3001.5501 找到里面公开代码中用来数据预处理的那部分,譬如你需要用UK-DALE数据集,你就找用UK-DALE数据集的论文,看看人家是怎么做数据预处理的。
我会在下面标注几个最常用常见的
更新时间:2023年1月10日 21:55:40
公开数据集:
1.REDD(The Reference Energy Disaggregation Data Set) (常用)
http://redd.csail.mit.edu/
id:redd
password:disaggregatetheenergy
2.AMPds (常用)
AMPds (The Almanac of Minutely Power Dataset).
nilmtk自带的converter是对应 AMPds R2013版本
除此之外还有
AMPds2: The Almanac of Minutely Power dataset (Version 2)
3.CER_Electricity_Data
ISSDA | Commission for Energy Regulation (CER)
4.Umass Smart Data Set
Smart - UMass Trace Repository
5.REFIT (常用)
颗粒度最细,8s级别
REFIT: Electrical Load Measurements — University of Strathclyde
6.ENLITEN
https://researchportal.bath.ac.uk/en/datasets/enliten-a-dataset-and-its-associated-analysis-code-for-the-paper
7.GREEND
GREEND download | SourceForge.net
8.ElectricityLoadDiagrams
OEDI: Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States
没有missing point
9.UK-DALE (常用)
UK Domestic Appliance-Level Electricity (UK-DALE) dataset | Jack Kelly
https://data.ukedc.rl.ac.uk/browse/edc/efficiency/residential/EnergyConsumption/Domestic
有三个版本
10.ECO data set
DSG - Research Project: ECO data set
11.HES(Household Electricity Study)
Science Search
12.The tracebase data set
GitHub - areinhardt/tracebase: The tracebase appliance-level power consumption data set
13.ENERTALK
https://www.nature.com/articles/s41597-019-0212-5
预处理和可视化代码:GitHub - ch-shin/ENERTALK-dataset: The ENERTALK Dataset, 15 Hz Electricity Consumption Data from 22 Houses in Korea
14.BLUED
非侵入式负荷分解之BLUED数据集_Alex Ching Ho的博客-CSDN博客_blued数据集
15.DEDDIAG
DEDDIAG, a domestic electricity demand dataset of individual appliances in Germany
16.PLAID (常用)
PLAID2018: PLAID 2018
PLAID 2017: PLAID 2017
PLAID 2014: PLAID 2014
17.MORED: A Moroccan Buildings’ Electricity Consumption Dataset
https://github.com/MOREDataset/MORED
paper:https://www.mdpi.com/1996-1073/13/24/6737
18.Residential Power Traces for Five Houses: the iHomeLab RAPT Dataset
paper: Data | Free Full-Text | Residential Power Traces for Five Houses: The iHomeLab RAPT Dataset
pre-process code: https://github.com/ihomelab/RAPT-dataset
dataset: Residential Power Traces for Five Houses: the iHomeLab RAPT Dataset | Zenodo
19.FIRED: A Fully-labeled hIgh-fRequency Electricity Disaggregation Dataset
paper: FIRED | Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation
code: GitHub - voelkerb/FIRED_dataset_helper: Files to load and use the Fully-labeled hIgh-fRequencyElectricity Disaggregation (FIRED) dataset. Files to generate statistics and plots.
20.RAE:The Rainforest Automation Energy Dataset for Smart Grid Meter Data Analysis
pdf: Data | Free Full-Text | RAE: The Rainforest Automation Energy Dataset for Smart Grid Meter Data Analysis
GitHub - smakonin/RAE.dataset: Scripts of the the Rainforest Automation Energy Dataset (RAE dataset)
21.COOLL:Controlled On/Off Loads Library, a Public Dataset of High-Sampled Electrical Signals for Appliance Identification
链接无。
合成数据集:
顾名思义,这里面的电力数据是人工合成的,跟上面用电表仪器采集的数据不一样,这里一般用来做增强数据集。
1.SHED
A Simulated High-frequency Energy Disaggregation dataset for commercial buildings
SHED Dataset
2.SynD(A Synthetic Energy Consumption Dataset for NILM)
code: GitHub - klemenjak/SynD: A Synthetic Energy Consumption Dataset for Non-Intrusive Load Monitoring
pdf: A synthetic energy dataset for non-intrusive load monitoring in households | Scientific Data
3.SmartSim
A Device Accurate Smart Home Simulator for Energy Analytics
GitHub - sustainablecomputinglab/smartsim
4.Device-Free User Activity Detection using Non-Intrusive Load Monitoring: A Case Study
pdf: https://www.areinhardt.de/publications/2020/Reinhardt_DFHS_2020.pdf
code: GitHub - klemenjak/antgen: The AMBAL-based NILM Trace generator (for NILMTK)
How does Load Disaggregation Performance Depend on Data Characteristics? Insights from a Benchmarking Study. (2020). PDF: https://www.areinhardt.de/publications/2020/Reinhardt_eEnergy_2020.pdf
工具(框架、数据集转换工具等):
NILM-TK是一个非侵入式负载监测的开源工具包,专门设计用于以可再现的方式比较能量分解算法,就是Jack Kelly他们几个做的一个toolkit工具包。
论文地址: NILMTK | Proceedings of the 5th international conference on Future energy systems
NILMTK:
Code: GitHub - nilmtk/nilmtk: Non-Intrusive Load Monitoring Toolkit (nilmtk)
Documentation: NILMTK Documentation
all the state-of-the-art algorithms for the task of energy disaggregation
GitHub - nilmtk/nilmtk-contrib
An evaluation framework for non-intrusive load monitoring algorithms
https://github.com/beckel/nilm-eval
NILM评价指标的相关论文
《On Metrics to Assess the Transferability of Machine Learning Models in Non-Intrusive Load Monitoring》
《Machine learning approaches for non-intrusive load monitoring: from qualitative to quantitative comparation,Artificial Intelligence Review》
NILM中的特征选择相关论文
《Comprehensive feature selection for appliance classification in NILM》
DOI:10.1016/j.enbuild.2017.06.042
code:https://github.com/18D070001/Electrical-Devices-Identification-Model
NILM一些拓展应用:
监测独居老人:
《Assessing Human Activity in Elderly People Using Non-Intrusive Load Monitoring》
DOI:10.3390/s17020351
Sustainable Homecare Monitoring System by Sensing Electricity Data | IEEE Journals & Magazine | IEEE Xplore
用NILM实现居家活动的识别:
采样频率对应不同的谐波特征
Non-Intrusive Load Monitoring and Classification of Activities of Daily Living Using Residential Smart Meter Data | IEEE Journals & Magazine | IEEE Xplore
关于NILM的一些网站(workshop、协会之类的)
The International Workshop on Non-Intrusive Load Monitoring (NILM)
http://www.nilm.eu/
http://wiki.nilm.eu/