发布时间:2023-04-19 文章分类:电脑基础 投稿人:樱花 字号: 默认 | | 超大 打印

YOLOv5-7.0可以用来做实例分割的任务了!!!用完感觉实在是666啊

目录

项目介绍

 数据标注及处理

        json转换txt 

        切分训练集、测试集、验证集

修改配置文件

模型训练和推理

后处理


项目介绍

本文章主要目的有两个:

  1. 用yolov5分割网络训练自己的数据
  2. 处理yolov5的分割结果,将分割的图像裁剪出来

我的项目是需要识别图一里面这些小块,将每个小块裁剪出来,旋转成水平角度后再进行下一步的操作。因项目保密原因,就用模糊的图片代替,见谅见谅。下面展示了效果图,如果你的项目需要实现的功能跟我类似,可参考参考

YOLOv5-7.0实例分割训练自己的数据,切分mask图并摆正

 图一

YOLOv5-7.0实例分割训练自己的数据,切分mask图并摆正

 图二

YOLOv5-7.0实例分割训练自己的数据,切分mask图并摆正

 图三

YOLOv5-7.0实例分割训练自己的数据,切分mask图并摆正

图四

图片说明:

 数据标注及处理

  1. 标注工具:labelme
  2. 标注文件:json格式
  3. 训练数据要求:坐标归一化的txt文件

 从作者提供的样例数据coco128-seg(下载链接:https://ultralytics.com/assets/coco128-seg.zip),可以看到txt文件的内容,分别是类别下标,归一化的坐标,中间用空格分割,不同目标物体用换行符

YOLOv5-7.0实例分割训练自己的数据,切分mask图并摆正

        json转换txt 

如何将我们用labelme标注的json文件转化为对应的格式呢?

import json
import os
import argparse
from tqdm import tqdm
def convert_label_json(json_dir, save_dir, classes):
    json_paths = os.listdir(json_dir)
    classes = classes.split(',')
    for json_path in tqdm(json_paths):
    # for json_path in json_paths:
        path = os.path.join(json_dir,json_path)
        with open(path,'r') as load_f:
            json_dict = json.load(load_f)
        h, w = json_dict['imageHeight'], json_dict['imageWidth']
        # save txt path
        txt_path = os.path.join(save_dir, json_path.replace('json', 'txt'))
        txt_file = open(txt_path, 'w')
        for shape_dict in json_dict['shapes']:
            label = shape_dict['label']
            label_index = classes.index(label)
            points = shape_dict['points']
            points_nor_list = []
            for point in points:
                points_nor_list.append(point[0]/w)
                points_nor_list.append(point[1]/h)
            points_nor_list = list(map(lambda x:str(x),points_nor_list))
            points_nor_str = ' '.join(points_nor_list)
            label_str = str(label_index) + ' ' +points_nor_str + '\n'
            txt_file.writelines(label_str)
if __name__ == "__main__":
    """
    python json2txt_nomalize.py --json-dir my_datasets/color_rings/jsons --save-dir my_datasets/color_rings/txts --classes "cat,dogs"
    """
    parser = argparse.ArgumentParser(description='json convert to txt params')
    parser.add_argument('--json-dir', type=str, help='json path dir')
    parser.add_argument('--save-dir', type=str, help='txt save dir')
    parser.add_argument('--classes', type=str, help='classes')
    args = parser.parse_args()
    json_dir = args.json_dir
    save_dir = args.save_dir
    classes = args.classes
    convert_label_json(json_dir, save_dir, classes)

脚本说明:

    --json-dir:标注的纯json目录;

    --save-dir:要保存的txt文件目录;

    --classes:类别名称,它的类别顺序跟后面的配置文件顺序相同,如类别cat,dog,执行命令可以这么写

python json2txt_nomalize.py --json-dir my_datasets/color_rings/jsons --save-dir my_datasets/color_rings/txts --classes "cat,dog"

        切分训练集、测试集、验证集

# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os
import argparse
# 检查文件夹是否存在
def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)
def main(image_dir, txt_dir, save_dir):
    # 创建文件夹
    mkdir(save_dir)
    images_dir = os.path.join(save_dir, 'images')
    labels_dir = os.path.join(save_dir, 'labels')
    img_train_path = os.path.join(images_dir, 'train')
    img_test_path = os.path.join(images_dir, 'test')
    img_val_path = os.path.join(images_dir, 'val')
    label_train_path = os.path.join(labels_dir, 'train')
    label_test_path = os.path.join(labels_dir, 'test')
    label_val_path = os.path.join(labels_dir, 'val')
    mkdir(images_dir);mkdir(labels_dir);mkdir(img_train_path);mkdir(img_test_path);mkdir(img_val_path);mkdir(label_train_path);mkdir(label_test_path);mkdir(label_val_path);
    # 数据集划分比例,训练集75%,验证集15%,测试集15%,按需修改
    train_percent = 0.8
    val_percent = 0.1
    test_percent = 0.1
    total_txt = os.listdir(txt_dir)
    num_txt = len(total_txt)
    list_all_txt = range(num_txt)  # 范围 range(0, num)
    num_train = int(num_txt * train_percent)
    num_val = int(num_txt * val_percent)
    num_test = num_txt - num_train - num_val
    train = random.sample(list_all_txt, num_train)
    # 在全部数据集中取出train
    val_test = [i for i in list_all_txt if not i in train]
    # 再从val_test取出num_val个元素,val_test剩下的元素就是test
    val = random.sample(val_test, num_val)
    print("训练集数目:{}, 验证集数目:{},测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))
    for i in list_all_txt:
        name = total_txt[i][:-4]
        srcImage = os.path.join(image_dir, name+'.jpg')
        srcLabel = os.path.join(txt_dir, name + '.txt')
        if i in train:
            dst_train_Image = os.path.join(img_train_path, name + '.jpg')
            dst_train_Label = os.path.join(label_train_path, name + '.txt')
            shutil.copyfile(srcImage, dst_train_Image)
            shutil.copyfile(srcLabel, dst_train_Label)
        elif i in val:
            dst_val_Image = os.path.join(img_val_path, name + '.jpg')
            dst_val_Label = os.path.join(label_val_path, name + '.txt')
            shutil.copyfile(srcImage, dst_val_Image)
            shutil.copyfile(srcLabel, dst_val_Label)
        else:
            dst_test_Image = os.path.join(img_test_path, name + '.jpg')
            dst_test_Label = os.path.join(label_test_path, name + '.txt')
            shutil.copyfile(srcImage, dst_test_Image)
            shutil.copyfile(srcLabel, dst_test_Label)
if __name__ == '__main__':
    """
    python split_datasets.py --image-dir my_datasets/color_rings/imgs --txt-dir my_datasets/color_rings/txts --save-dir my_datasets/color_rings/train_data
    """
    parser = argparse.ArgumentParser(description='split datasets to train,val,test params')
    parser.add_argument('--image-dir', type=str, help='image path dir')
    parser.add_argument('--txt-dir', type=str, help='txt path dir')
    parser.add_argument('--save-dir', type=str, help='save dir')
    args = parser.parse_args()
    image_dir = args.image_dir
    txt_dir = args.txt_dir
    save_dir = args.save_dir
    main(image_dir, txt_dir, save_dir)

脚本说明:

    --image-dir:训练图片目录;

    --txt-dir:上一步生成txt的目录; 

    --save-dir:切分数据集存放路径,执行命令样例:

python split_datasets.py --image-dir my_datasets/color_rings/imgs --txt-dir my_datasets/color_rings/txts --save-dir my_datasets/color_rings/train_data

执行后在存放路径可以看到,自动生成images和labels两个文件夹,两个文件夹里面有三个文件夹:train\test\val

修改配置文件

1、data文件夹里面有yaml文件,下面图片是data/coco128-seg.yaml的内容。

    path:是上面--save-dir切分图片存放的路径;

    train、val、test分别对于images里面的文件夹,按实际填入;

    names:是类别名称和赋予的下标,跟上面转txt顺序相同

YOLOv5-7.0实例分割训练自己的数据,切分mask图并摆正

2、models/segment文件夹也有yaml文件,如果你使用yolov5m模型,就修改yolov5m-seg.yaml文件的nc,如果有两个类别,nc就修改成2

模型训练和推理

1、训练执行命令

python segment/train.py --epochs 300 --data coco128-seg.yaml --weights yolov5m-seg.pt --img 640 --cfg models/segment/yolov5m-seg.yaml --batch-size 16 --device 2

执行命令说明:指明配置文件、预训练权重路径等,具体参数查看train.py文件

结果:在runs目录生成train-seg文件,每一次训练都会生成对应的权重文件

2、模型推理

python segment/predict.py --weight ./runs/train-seg/exp2/weights/best.pt --source ./my_datasets/color_rings/train_data/images/test/000030.jpg

执行命令说明:指明权重路径和预测的图片或者文件夹,具体参数查看predict.py文件

结果:在runs目录生成predict-seg目录,保存了上面图二的结果图

后处理

重要的后处理来了!!!

segment/predict.py,约169行附近,将预测坐标保存在txt文件。打印segments的维度,他是一个list,如果预测的图片中有6个目标,那么list包含了6个子元素,每个元素都是多个坐标点构成,坐标点是目标预测出来的轮廓坐标值

YOLOv5-7.0实例分割训练自己的数据,切分mask图并摆正

后处理需要做的步骤有:

  1. 坐标反归一化:segments的坐标和txt的格式相同,都是归一化的坐标值,需要转换为图片真实的坐标值
  2. 获取四个点:多个坐标点计算出左上、右上、左下、右下的点,并将他们按顺时针的顺序输出
  3. 旋转摆正:已知四个点,可计算得出角度,将目标摆正后保存成小图 

代码献出

# segments是分割的坐标点
segments = [
    scale_segments(im0.shape if retina_masks else im.shape[2:], x, im0.shape, normalize=True)
    for x in reversed(masks2segments(masks))]
new_segments = []  # 用来装反归一化后的坐标
image_list = []    # 切割的小图
im0_h, im0_w, im0_c = im0.shape
for k, seg_list in enumerate(segments):
    # 将归一化的点转换为坐标点
    new_seg_list = []
    for s_point in seg_list:
        pt1, pt2 = s_point
        new_pt1 = int(pt1 * im0_w)
        new_pt2 = int(pt2 * im0_h)
        new_seg_list.append([new_pt1, new_pt2])
    rect = cv2.minAreaRect(np.array(new_seg_list))  # 得到最小外接矩形的(中心(x,y), (宽,高), 旋转角度)
    seg_bbox = cv2.boxPoints(rect)  # 获取最小外接矩形的4个顶点坐标(ps: cv2.boxPoints(rect) for OpenCV 3.x)
    seg_bbox = np.int0(seg_bbox)
    if np.linalg.norm(seg_bbox[0] - seg_bbox[1]) < 5 or np.linalg.norm(seg_bbox[3] - seg_bbox[0]) < 5:
        continue
    # 坐标点排序
    box1 = sorted(seg_bbox, key=lambda x: (x[1], x[0]))
    # 将坐标点按照顺时针方向来排序,box的从左往右从上到下排序
    if box1[0][0] > box1[1][0]:
        box1[0], box1[1] = box1[1], box1[0]
    if box1[2][0] < box1[3][0]:
        box1[2], box1[3] = box1[3], box1[2]
    if box1[0][1] > box1[1][1]:
        box1[0], box1[1], box1[2], box1[3] = box1[1], box1[2], box1[3], box1[0]
    box1_list = [b.tolist() for b in box1] # 坐标转换为list格式
    new_segments.append(box1_list)
    tmp_box = copy.deepcopy(np.array(box1)).astype(np.float32)
    partImg_array = image_crop_tools.get_rotate_crop_image(im0, tmp_box)
    image_list.append(partImg_array)
    # cv2.imwrite(str(k)+'.jpg', partImg_array)  # 保存小图
# 在原图上画出分割图像
# src_image = im0.copy()
# for ns_box in new_segments:
#     cv2.drawContours(src_image, [np.array(ns_box)], -1, (0, 255, 0), 2)
# cv2.imwrite('1.jpg', src_image)

 代码说明:该部分脚本复制在segment/predict.py文件,可以放在if save_txt的同一级别下面。其中注释#保存小图,是保存文章开头图四的图片。注释#在原图上画出分割图像,是文章开头图三的图像。

旋转部分用到了image_crop_tools.get_rotate_crop_image函数,主要用来做角度计算和图片摆正,代码如下:

import cv2
import numpy as np
def get_rotate_crop_image(img, points):
    """
    根据坐标点截取图像
    :param img: 
    :param points: 
    :return: 
    """
    h, w, _ = img.shape
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    img_crop_width = int(np.linalg.norm(points[0] - points[1]))
    img_crop_height = int(np.linalg.norm(points[0] - points[3]))
    pts_std = np.float32([[0, 0], [img_crop_width, 0], [img_crop_width, img_crop_height], [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img_crop,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1:
#         pass
#         print(dst_img_height * 1.0 / dst_img_width,dst_img_height,dst_img_width,'*-'*10)
        dst_img = np.rot90(dst_img,-1)   #-1为逆时针,1为顺时针。
    return dst_img
def sorted_boxes(dt_boxes):
    """
    坐标点排序
    """
    num_boxes = dt_boxes.shape[0]
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
    _boxes = list(sorted_boxes)
    for i in range(num_boxes - 1):
        if abs(_boxes[i+1][0][1] - _boxes[i][0][1]) < 10 and \
            (_boxes[i + 1][0][0] < _boxes[i][0][0]):
            tmp = _boxes[i]
            _boxes[i] = _boxes[i + 1]
            _boxes[i + 1] = tmp
    return _boxes

 撒花完结!!!