发布时间:2023-03-31 文章分类:电脑基础 投稿人:樱花 字号: 默认 | | 超大 打印

词频统计是指在文本中计算每个词出现的次数。
在 Python 中,可以使用一些第三方库(如 jieba)来分词,然后使用字典等数据结构记录每个词的词频。

文章目录

    • Python中文词频分词
      • 安装 jieba 库:
      • 使用 jieba.cut() 函数对中文文本进行分词:
      • 输出结果:
      • 使用字典可以很方便地存储每个词语的词频
      • 再次整理Python词频统计的具体实现方法:
    • 停用词
    • 词干提取
    • 词云图
    • Python 中文词频分词其它库

Python中文词频分词

安装 jieba 库:

pip install jieba

使用 jieba.cut() 函数对中文文本进行分词:

import jieba
text = "梦想橡皮擦的Python博客很不错"
seg_list = jieba.cut(text)
print(list(seg_list))

输出结果:

['梦想', '橡皮擦', '的', 'Python', '博客', '很', '不错']

使用字典可以很方便地存储每个词语的词频

import jieba
text = "梦想橡皮擦的Python博客很不错"
seg_list = jieba.cut(text)
# print(list(seg_list))
word_dict = {}
for word in seg_list:
    print(word)
    if word in word_dict:
        word_dict[word] += 1
    else:
        word_dict[word] = 1
print(word_dict)

再次整理Python词频统计的具体实现方法:

代码示例:

import jieba
def get_word_frequency(text):
    seg_list = jieba.cut(text)
    word_dict = {}
    for word in seg_list:
        if word in word_dict:
            word_dict[word] += 1
        else:
            word_dict[word] = 1
    sorted_word_dict = sorted(word_dict.items(), key=lambda x: x[1], reverse=True)
    return sorted_word_dict
text = "梦想橡皮擦的Python博客很不错"
result = get_word_frequency(text)
print(result)

疑问搞懂,python中文词频统计,让你真能学会

停用词

在分词时,通常会忽略一些词语,这些词语被称为停用词。如常用的助词、介词等。

在 Python 中,可以预先加载停用词表,在分词时,如果词语是停用词,则忽略。

下面是一个简单的例子:

import jieba
stop_words = set()
with open("stop_words.txt", "r",encoding='utf-8') as f:
    for line in f:
        stop_words.add(line.strip())
text = "梦想橡皮擦的Python博客很不错"
seg_list = jieba.cut(text)
filtered_words = [word for word in seg_list if word not in stop_words]
print(filtered_words)

“stop_words.txt” 文件中是停用词表,每行一个词语。在代码中,通过 with open 语句读取文件,并将每个词语加入到 stop_words 集合中。在分词后,通过列表推导式,筛选出不是停用词的词语。文件中的内容如下:

疑问搞懂,python中文词频统计,让你真能学会

词干提取

词干提取是将词语的不同形式提取为同一词干的过程。例如 “running” 和 “runner” 可以被提取为 “run”。

在 Python 中,可以使用词干提取工具来进行词干提取,常见的词干提取工具有 nltk 库的 PorterStemmer 和 SnowballStemmer 。

下面是一个简单的例子:

import nltk
from nltk.stem import SnowballStemmer
stemmer = SnowballStemmer("english")
words = ["run", "runner", "running"]
stemmed_words = [stemmer.stem(word) for word in words]
print(stemmed_words)

SnowballStemmer 函数的第一个参数是语言。 english 表示使用英语词干提取器。
其支持多种语言,可以指定不同的语言,以使用不同的词干提取器。例如,如果是法语文本,可以使用 SnowballStemmer("french")

stemmer.stem(word) 是 nltk 库的 SnowballStemmer 函数的一个方法,用于提取词干。

疑问搞懂,python中文词频统计,让你真能学会

词云图

词云图是一种展示词频的可视化图形,其中词语的大小代表词频的多少。

在 Python 中,可以使用词云库 wordcloud 来生成词云图。

以下是一个使用 wordcloud 库创建词云图的简单示例:

from wordcloud import WordCloud
import matplotlib.pyplot as plt
text = "ca1 ca2 ca3 ca4 ca4 ca4"
wordcloud = WordCloud(width=400, height=400, random_state=21, max_font_size=110).generate(text)
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis('off')
plt.show()

首先使用 WordCloud 函数创建一个词云图对象,并设置图片的宽度、高度、随机状态、字体大小等参数。

然后,使用 generate() 方法生成词云图,并将其作为参数传递给 matplotlib 的 imshow() 函数。

最后,使用 show() 方法显示词云图。

疑问搞懂,python中文词频统计,让你真能学会

Python 中文词频分词其它库

📢📢📢📢📢📢
💗 你正在阅读 【梦想橡皮擦】 的博客
👍 阅读完毕,可以点点小手赞一下
🌻 发现错误,直接评论区中指正吧
📆 橡皮擦的第 872 篇原创博客

👇 全网 6000+人正在学习的 爬虫专栏 👇👇👇👇