发布时间:2023-01-14 文章分类:编程知识 投稿人:赵颖 字号: 默认 | | 超大 打印

作者:Hai Xiang
来源:https://www.cnblogs.com/haixiang/p/12867160.html

什么是elasticsearch

Elasticsearch 是一个开源的高度可扩展的全文搜索和分析引擎,拥有查询近实时的超强性能。

大名鼎鼎的Lucene 搜索引擎被广泛用于搜索领域,但是操作复杂繁琐,总是让开发者敬而远之。而 Elasticsearch将 Lucene 作为其核心来实现所有索引和搜索的功能,通过简单的 RESTful 语法来隐藏掉 Lucene 的复杂性,从而让全文搜索变得简单

ES在Lucene基础上,提供了一些分布式的实现:集群,分片,复制等。

搜索为什么不用MySQL而用es

我们本文案例是一个迷你商品搜索系统,为什么不考虑使用MySQL来实现搜索功能呢?原因如下:

es在大厂中的应用情况

es客户端选型

spring-boot-starter-data-elasticsearch

我相信你看到的网上各类公开课视频或者小项目均推荐使用这款springboot整合过的es客户端,但是我们要say no!

另外,ES 系列面试题和答案全部整理好了,微信搜索​Java技术栈,在后台发送:面试,​可以在线阅读。

使用 Elasticsearch 搭建自己的搜索系统,这个厉害了。。

此图是引入的最新版本的依赖,我们可以看到它所使用的es-high-client也为6.8.7,而es7.x版本都已经更新很久了,这里许多新特性都无法使用,所以版本滞后是他最大的问题。而且它的底层也是highclient,我们操作highclient可以更灵活。我呆过的两个公司均未采用此客户端。

elasticsearch-rest-high-level-client

这是官方推荐的客户端,支持最新的es,其实使用起来也很便利,因为是官方推荐所以在特性的操作上肯定优于前者。而且该客户端与TransportClient不同,不存在并发瓶颈的问题,官方首推,必为精品!

搭建自己的迷你搜索系统

引入es相关依赖,除此之外需引入springboot-web依赖、jackson依赖以及lombok依赖等。

Spring Boot 基础就不介绍了,推荐下这个实战教程:
https://www.javastack.cn/categories/Spring-Boot/

<properties>
    <es.version>7.3.2</es.version>
</properties>
<!-- high client-->
<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
    <version>${es.version}</version>
    <exclusions>
        <exclusion>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-client</artifactId>
        </exclusion>
        <exclusion>
            <groupId>org.elasticsearch</groupId>
            <artifactId>elasticsearch</artifactId>
        </exclusion>
    </exclusions>
</dependency>
<dependency>
    <groupId>org.elasticsearch</groupId>
    <artifactId>elasticsearch</artifactId>
    <version>${es.version}</version>
</dependency>
<!--rest low client high client以来低版本client所以需要引入-->
<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-client</artifactId>
    <version>${es.version}</version>
</dependency>

es配置文件es-config.properties

es.host=localhost
es.port=9200
es.token=es-token
es.charset=UTF-8
es.scheme=http
es.client.connectTimeOut=5000
es.client.socketTimeout=15000

封装RestHighLevelClient

@Configuration
@PropertySource("classpath:es-config.properties")
public class RestHighLevelClientConfig {
    @Value("${es.host}")
    private String host;
    @Value("${es.port}")
    private int port;
    @Value("${es.scheme}")
    private String scheme;
    @Value("${es.token}")
    private String token;
    @Value("${es.charset}")
    private String charSet;
    @Value("${es.client.connectTimeOut}")
    private int connectTimeOut;
    @Value("${es.client.socketTimeout}")
    private int socketTimeout;
    @Bean
    public RestClientBuilder restClientBuilder() {
        RestClientBuilder restClientBuilder = RestClient.builder(
                new HttpHost(host, port, scheme)
        );
        Header[] defaultHeaders = new Header[]{
                new BasicHeader("Accept", "*/*"),
                new BasicHeader("Charset", charSet),
                //设置token 是为了安全 网关可以验证token来决定是否发起请求 我们这里只做象征性配置
                new BasicHeader("E_TOKEN", token)
        };
        restClientBuilder.setDefaultHeaders(defaultHeaders);
        restClientBuilder.setFailureListener(new RestClient.FailureListener(){
            @Override
            public void onFailure(Node node) {
                System.out.println("监听某个es节点失败");
            }
        });
        restClientBuilder.setRequestConfigCallback(builder ->
                builder.setConnectTimeout(connectTimeOut).setSocketTimeout(socketTimeout));
        return restClientBuilder;
    }
    @Bean
    public RestHighLevelClient restHighLevelClient(RestClientBuilder restClientBuilder) {
        return new RestHighLevelClient(restClientBuilder);
    }
}

封装es常用操作es搜索系统封装源码

@Service
public class RestHighLevelClientService {
    @Autowired
    private RestHighLevelClient client;
    @Autowired
    private ObjectMapper mapper;
    /**
     * 创建索引
     * @param indexName
     * @param settings
     * @param mapping
     * @return
     * @throws IOException
     */
    public CreateIndexResponse createIndex(String indexName, String settings, String mapping) throws IOException {
        CreateIndexRequest request = new CreateIndexRequest(indexName);
        if (null != settings && !"".equals(settings)) {
            request.settings(settings, XContentType.JSON);
        }
        if (null != mapping && !"".equals(mapping)) {
            request.mapping(mapping, XContentType.JSON);
        }
        return client.indices().create(request, RequestOptions.DEFAULT);
    }
    /**
     * 判断 index 是否存在
     */
    public boolean indexExists(String indexName) throws IOException {
        GetIndexRequest request = new GetIndexRequest(indexName);
        return client.indices().exists(request, RequestOptions.DEFAULT);
    }
    /**
     * 搜索
    */
    public SearchResponse search(String field, String key, String rangeField, String 
                                 from, String to,String termField, String termVal, 
                                 String ... indexNames) throws IOException{
        SearchRequest request = new SearchRequest(indexNames);
        SearchSourceBuilder builder = new SearchSourceBuilder();
        BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder();
        boolQueryBuilder.must(new MatchQueryBuilder(field, key)).must(new RangeQueryBuilder(rangeField).from(from).to(to)).must(new TermQueryBuilder(termField, termVal));
        builder.query(boolQueryBuilder);
        request.source(builder);
        log.info("[搜索语句为:{}]",request.source().toString());
        return client.search(request, RequestOptions.DEFAULT);
    }
    /**
     * 批量导入
     * @param indexName
     * @param isAutoId 使用自动id 还是使用传入对象的id
     * @param source
     * @return
     * @throws IOException
     */
    public BulkResponse importAll(String indexName, boolean isAutoId, String  source) throws IOException{
        if (0 == source.length()){
            //todo 抛出异常 导入数据为空
        }
        BulkRequest request = new BulkRequest();
        JsonNode jsonNode = mapper.readTree(source);
        if (jsonNode.isArray()) {
            for (JsonNode node : jsonNode) {
                if (isAutoId) {
                    request.add(new IndexRequest(indexName).source(node.asText(), XContentType.JSON));
                } else {
                    request.add(new IndexRequest(indexName)
                            .id(node.get("id").asText())
                            .source(node.asText(), XContentType.JSON));
                }
            }
        }
        return client.bulk(request, RequestOptions.DEFAULT);
    }

创建索引,这里的settings是设置索引是否设置复制节点、设置分片个数,mappings就和数据库中的表结构一样,用来指定各个字段的类型,同时也可以设置字段是否分词(我们这里使用ik中文分词器)、采用什么分词方式。

@Test
public void createIdx() throws IOException {
    String settings = "" +
            "  {\n" +
            "      \"number_of_shards\" : \"2\",\n" +
            "      \"number_of_replicas\" : \"0\"\n" +
            "   }";
    String mappings = "" +
            "{\n" +
            "    \"properties\": {\n" +
            "      \"itemId\" : {\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"ignore_above\": 64\n" +
            "      },\n" +
            "      \"urlId\" : {\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"ignore_above\": 64\n" +
            "      },\n" +
            "      \"sellAddress\" : {\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\", \n" +
            "        \"search_analyzer\": \"ik_smart\",\n" +
            "        \"fields\": {\n" +
            "          \"keyword\" : {\"ignore_above\" : 256, \"type\" : \"keyword\"}\n" +
            "        }\n" +
            "      },\n" +
            "      \"courierFee\" : {\n" +
            "        \"type\": \"text\n" +
            "      },\n" +
            "      \"promotions\" : {\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\", \n" +
            "        \"search_analyzer\": \"ik_smart\",\n" +
            "        \"fields\": {\n" +
            "          \"keyword\" : {\"ignore_above\" : 256, \"type\" : \"keyword\"}\n" +
            "        }\n" +
            "      },\n" +
            "      \"originalPrice\" : {\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"ignore_above\": 64\n" +
            "      },\n" +
            "      \"startTime\" : {\n" +
            "        \"type\": \"date\",\n" +
            "        \"format\": \"yyyy-MM-dd HH:mm:ss\"\n" +
            "      },\n" +
            "      \"endTime\" : {\n" +
            "        \"type\": \"date\",\n" +
            "        \"format\": \"yyyy-MM-dd HH:mm:ss\"\n" +
            "      },\n" +
            "      \"title\" : {\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\", \n" +
            "        \"search_analyzer\": \"ik_smart\",\n" +
            "        \"fields\": {\n" +
            "          \"keyword\" : {\"ignore_above\" : 256, \"type\" : \"keyword\"}\n" +
            "        }\n" +
            "      },\n" +
            "      \"serviceGuarantee\" : {\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\", \n" +
            "        \"search_analyzer\": \"ik_smart\",\n" +
            "        \"fields\": {\n" +
            "          \"keyword\" : {\"ignore_above\" : 256, \"type\" : \"keyword\"}\n" +
            "        }\n" +
            "      },\n" +
            "      \"venue\" : {\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\", \n" +
            "        \"search_analyzer\": \"ik_smart\",\n" +
            "        \"fields\": {\n" +
            "          \"keyword\" : {\"ignore_above\" : 256, \"type\" : \"keyword\"}\n" +
            "        }\n" +
            "      },\n" +
            "      \"currentPrice\" : {\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"ignore_above\": 64\n" +
            "      }\n" +
            "   }\n" +
            "}";
    clientService.createIndex("idx_item", settings, mappings);
}

分词技巧

我们向es导入十万条淘宝双11活动数据作为我们的样本数据,数据结构如下所示

{
	"_id": "https://detail.tmall.com/item.htm?id=538528948719\u0026skuId=3216546934499",
	"卖家地址": "上海",
	"快递费": "运费: 0.00元",
	"优惠活动": "满199减10,满299减30,满499减60,可跨店",
	"商品ID": "538528948719",
	"原价": "2290.00",
	"活动开始时间": "2016-11-11 00:00:00",
	"活动结束时间": "2016-11-11 23:59:59",
	"标题": "【天猫海外直营】 ReFa CARAT RAY 黎珐 双球滚轮波光美容仪",
	"服务保障": "正品保证;赠运费险;极速退款;七天退换",
	"会场": "进口尖货",
	"现价": "1950.00"
}

调用上面封装的批量导入方法进行导入

@Test
public void importAll() throws IOException {
    clientService.importAll("idx_item", true, itemService.getItemsJson());
}

我们调用封装的搜索方法进行搜索,搜索产地为武汉、价格在11-149之间的相关酒产品,这与我们淘宝中设置筛选条件搜索商品操作一致。

@Test
public void search() throws IOException {
    SearchResponse search = clientService.search("title", "酒", "currentPrice",
            "11", "149", "sellAddress", "武汉");
    SearchHits hits = search.getHits();
    SearchHit[] hits1 = hits.getHits();
    for (SearchHit documentFields : hits1) {
        System.out.println( documentFields.getSourceAsString());
    }
}

我们得到以下搜索结果,其中_score为某一项的得分,商品就是按照它来排序。

{
  "_index": "idx_item",
  "_type": "_doc",
  "_id": "Rw3G7HEBDGgXwwHKFPCb",
  "_score": 10.995819,
  "_source": {
    "itemId": "525033055044",
    "urlId": "https://detail.tmall.com/item.htm?id=525033055044&skuId=def",
    "sellAddress": "湖北武汉",
    "courierFee": "快递: 0.00",
    "promotions": "满199减10,满299减30,满499减60,可跨店",
    "originalPrice": "3768.00",
    "startTime": "2016-11-01 00:00:00",
    "endTime": "2016-11-11 23:59:59",
    "title": "酒嗨酒 西班牙原瓶原装进口红酒蒙德干红葡萄酒6只装整箱送酒具",
    "serviceGuarantee": "破损包退;正品保证;公益宝贝;不支持7天退换;极速退款",
    "venue": "食品主会场",
    "currentPrice": "151.00"
  }
}

扩展性思考

近期热文推荐:

1.1,000+ 道 Java面试题及答案整理(2022最新版)

2.劲爆!Java 协程要来了。。。

3.Spring Boot 2.x 教程,太全了!

4.别再写满屏的爆爆爆炸类了,试试装饰器模式,这才是优雅的方式!!

5.《Java开发手册(嵩山版)》最新发布,速速下载!

觉得不错,别忘了随手点赞+转发哦!